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Abstract

This paper proposes a Rayleigh–Ritz procedure for localized buckling of a strut on a non-linear elastic foundation.

Firstly, the deflected shape of a strut is expanded into a series of Hermite orthogonal functions, which are proved

energy-integrable in an infinite region. Secondly, the errors of the numerical integrations of Hermite functions on the

infinite region are investigated and the suitable integral limit is proposed. Through the numerical investigation, it is

demonstrated that the first thirty Hermite functions are usually enough to approximate the localized buckling pattern.

The proposed method overcomes the disadvantages of the traditional methods, in which the trial functions in either

Rayleigh–Ritz or Galerkin analysis are based on the perturbation analyses of the corresponding non-linear differential

equation.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Buried submarine pipelines and continuously welded railway tracks may buckle under axial compression

induced by temperature changes. Hobbs (1984) pointed out the similarity between these two kinds of

problems. These structures have been modeled as a long beam resting on an elastic foundation and sub-

jected to axial compression (Hetenyi, 1946; Bazant and Cedolin, 1991). A extensive literature has been

built-up addressing these structures (Kerr and El-Aini, 1978; Kerr, 1980; Hobbs, 1984; Taylor and Aik Ben,

1984; Raoof and Maschner, 1993; Zhou and Murray, 1996). Often the buckled configuration in such
structures is a localized one, with only one or a few buckles (Kerr, 1980; Tvergaard and Needleman, 1981;

Hobbs, 1984). The prediction of the behavior of the structures under such circumstances is of significance.

Since the local buckling can happen at any location along the length, the successful formulation must admit

multiple solutions (Hunt and Wadee, 1991). Among the multiple post-critical equilibrium states, it is the
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principle of the least energy that governs the real buckled shape, if the structure is under conservative

loading (Whiting, 1997).

Both Rayleigh–Ritz method (Wadee et al., 1997) and Galerkin method (Whiting, 1997) have been de-

voted to this problem. Since randomly selected orthogonal series cannot guarantee the existence of the
energy integration, both methods are based on a double-scale perturbation analysis (Thompson and Hunt,

1973; Hunt et al., 1989) to obtain the trial functions or coordinate functions. As its procedure and the

resulting trial functions depend on the specific differential equation, the perturbation analysis is merely

applicable to a strut with a uniform bending stiffness. Furthermore, the perturbation analysis is only

effective when the loading parameter is close to the critical condition. As it is difficult to obtain the higher-

order trial functions from the perturbation analysis, the traditional Rayleigh–Ritz, with a few trial func-

tions, fails for the case with re-stabilizing non-linearity (Wadee and Bassom, 2000).

This paper proposes a technique that avoids this dependence upon the perturbation analysis and is
capable of generating good approximate solutions throughout the post-buckling regime. Since the buckling

shape of a strut is energy-integrable, it can be approximated by a series of orthogonal functions that are

also energy-integrable. Hermite functions (Debnath, 1995) are proved orthogonal on an infinite region.

This paper will demonstrate that they are complete in a sense and are able to approximate any energy-

integrable functions.

This paper first introduces Hermite polynomials and Hermite functions, and the recursion formulae are

obtained for Hermite functions and their first and second order derivatives. The expandability of any

energy-integrable functions into a series of Hermite functions is discussed. Then, the integration errors of
numerical schemes on an infinite region are investigated and a reasonable integration limit is suggested.

Finally, numerical examples are used to demonstrate the effectiveness of the technique, and the necessary

terms of Hermite functions are investigated.
2. Buckling of a strut on a non-linear elastic foundation

Consider an infinitely long elastic strut of bending stiffness EI , resting on a continuous elastic (Winkler)

foundation and loaded by an axial compressive force P , as shown in Fig. 1. The foundation has a softening

characteristic which can be introduced either by a piecewise linear function (Tvergaard and Needleman,

1980) or by non-linear components in its stiffness expression (Chater et al., 1983). In this paper, the re-
storing force F per unit length of the foundation is assumed as
F ¼ kwþ bw2 þ cw3 ð1Þ
where k represents the linear component of the stiffness, and b and c represent the non-linear components;
the softening characteristic is represented by the non-linear components.
k, c

P

P
EI

w(x)

Fig. 1. An elastic strut resting on a non-linear foundation.
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The actual response of the strut minimizes the following energy integration:
V ¼
Z 1
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By introducing the non-dimensional variables ~xx, ePP , ~ww, ~bb, and ~cc with
x ¼ Lc~xx; P ¼ TcePP ; w ¼ Lc~ww; b ¼ ~bbk=Lc; c ¼ ~cck=L2
c ð3Þ
where
Lc ¼
ffiffiffiffiffi
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the energy integration is simplified as
V ¼
Z 1
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Ignoring the trivial constant kL3
c and dropping the tildes above x, P , w, b, and c, the problem is changed to

minimize
V ¼
Z 1
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dx ð6Þ
to obtain the buckling shape of the strut. Its corresponding differential equation is
w00 00 þ Pw00 þ wþ bw3 þ cw3 ¼ 0 ð7Þ
where w00 ¼ d2w=dx2 and w00 00 ¼ d4w=dx4. For the linearized form of Eq. (7), the buckling mode is chosen in

the form of wðxÞ ¼ Aeikx; thus one finds P ¼ k2 þ 1=k2, by minimizing which the critical load P ¼ 2 is

obtained (Potier-Ferry, 1983).

In practice, the energy stored in the buckling deformation is always finite, which requires that the in-

tegration
R1
�1 w2ðxÞdx exists. In order to obtain a trial function or coordinate functions being able to

approximate the actual buckling pattern, the traditional approaches pursue a non-linear double-scale

perturbation analysis (Hunt et al., 1989; Wadee et al., 1997) of the differential equation (7). The analysis is

merely applicable to a uniform case.
3. Hermite orthogonal functions and their characteristics

To construct a series of coordinate functions being able to approximate the actual buckling pattern,
Hermite orthogonal functions, which are standard and irrelevant to a specific structure, are employed.

Hermite orthogonal functions are related to Hermite polynomials. First Hermite polynomials and their

orthogonality relation are reviewed, then Hermite orthogonal functions are defined and the recursion

formulae are obtained.

3.1. Hermite polynomials

The definition of Hermite polynomials can be found either in Courant and Hilbert (1953) or Poularikas
(1996)
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HnðtÞ ¼ ð�1Þnet2 d
ne�t2

dtn
n ¼ 0; 1; 2; . . . ; �1 < t < þ1 ð8Þ
They satisfy the following relations
Hnð�tÞ ¼ ð�1ÞnHnðtÞ ð9Þ

H 0
nðtÞ ¼ 2nHn�1ðtÞ n ¼ 1; 2; . . . ð10Þ
and the recursion formula exists,
HnðtÞ ¼ 2tHn�1ðtÞ � 2ðn� 1ÞHn�2ðtÞ n ¼ 2; 3; . . . ð11Þ

Hermite polynomials satisfy the following orthogonality relations (Courant and Hilbert, 1953):
Z 1

�1
e�t2HmðtÞHnðtÞdt ¼ 0 if m 6¼ n ð12Þ
and
 Z 1

�1
e�t2HnðtÞHnðtÞdt ¼ 2nn!

ffiffiffi
p

p
n ¼ 0; 1; 2; . . . ð13Þ
3.2. Hermite orthogonal functions

Hermite orthogonal functions (Courant and Hilbert, 1953) are given by
FnðtÞ ¼ e�t2=2HnðtÞ n ¼ 0; 1; 2; . . . ; �1 < t < þ1 ð14Þ

They are also called Weber–Hermite orthogonal functions (Debnath, 1995). From (12) and (13) it can be

seen that they satisfy the following orthogonality relations:
Z 1

�1
FmðtÞFnðtÞdt ¼ 0 if m 6¼ n ð15Þ
and
 Z 1

�1
FnðtÞFnðtÞdt ¼ 2nn!

ffiffiffi
p

p
n ¼ 0; 1; 2; . . . ð16Þ
Hence, the normalized Hermite functions are defined as
bFFnðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nn!
ffiffiffi
p

pp FnðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nn!
ffiffiffi
p

pp e�t2=2HnðtÞ ð17Þ
The first six normalized Hermite functions (for n ¼ 0–5) are shown in Fig. 2. Obviously, Hermite functions

attenuate very fast, which means they are ideal coordinate functions to represent the localized buckling

pattern.

Eqs. (9) and (11) show that Hermite functions satisfy
Fnð�tÞ ¼ ð�1ÞnFnðtÞ ð18Þ

and also the following recursion formula exists
FnðtÞ ¼ 2tFn�1ðtÞ � 2ðn� 1ÞFn�2ðtÞ nP 2 ð19Þ

By differentiating (14) and making use of (10) and (14), the recursion formula is obtained for the first order

derivatives of Hermite functions:
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Fig. 2. The normalized Hermite functions.
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F 0
nðtÞ ¼ 2nFn�1ðtÞ � tFnðtÞ nP 1 ð20Þ
By differentiating (20) and using (20) repeatedly, the recursion formula is derived for the second order

derivatives:
F 00
n ðtÞ ¼ 4nðn� 1ÞFn�2ðtÞ � 4ntFn�1ðtÞ þ ðt2 � 1ÞFnðtÞ nP 2 ð21Þ
Hence, from the first two Hermite orthogonal functions, the higher-order functions and their first and

second order derivatives can be computed from the recursion formulae. For the convenience of compu-
tation, Table 1 lists the first two Hermite orthogonal functions, their first and second order derivatives, and

the recursion formulae for higher-order orthogonal functions and their derivatives.

By assuming that Fð�1ÞðtÞ and Fð�2ÞðtÞ exist, it is easy to check that the recursion formulae for the de-

rivatives F 0
nðtÞ and F 00

n ðtÞ are valid even for n ¼ 0 and n ¼ 1. Hence, by assuming Fð�2ÞðtÞ ¼ Fð�1ÞðtÞ ¼ 0, all

the derivatives F 0
nðtÞ and F 00

n ðtÞ can be obtained from FnðtÞ by making use of the recursion formulae.

In numerical calculation, the value of FnðtÞ may become very large when n is big. It is more convenient to

use the normalized Hermite functions. The recursion formulae for the normalized Hermite functions are

listed in Table 2.
1

ion formulae of Hermite orthogonal functions

0 1 nP 2

e�t2=2 2te�t2=2 2tFn�1ðtÞ � 2ðn� 1ÞFn�2ðtÞ
�te�t2=2 2ð1� t2Þe�t2=2 2nFn�1ðtÞ � tFnðtÞ

Þ ðt2 � 1Þe�t2=2 ð2t3 � 6tÞe�t2=2 4nðn� 1ÞFn�2ðtÞ � 4ntFn�1ðtÞ þ ðt2 � 1ÞFnðtÞ



Table 2

Recursion formulae of normalized Hermite orthogonal functions

n 0 1 nP 2bFFnðtÞ 1ffiffi
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2
ffiffi
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3.3. Expansion in Hermite orthogonal functions

Any function, f ðtÞ, which is energy integrable, can be expanded into a converged series of Hermite

orthogonal functions. It can be proved via the completeness of a Hermite polynomial series.
If a continuous function, hðtÞ, satisfies

R1
�1 e�t2h2ðtÞdt < 1, its Hermite polynomial series
hðtÞ ¼
X1
n¼0

CnHnðtÞ �1 < t < 1 ð22Þ
with the coefficients
Cn ¼
1

2nn!
ffiffiffi
p

p
Z 1

�1
e�t2hðtÞHnðtÞdt ð23Þ
converges to hðtÞ (Poularikas, 1996).
Let
f ðtÞ ¼ e�t2=2hðtÞ ð24Þ

Then f ðtÞ satisfies

R1
�1 f 2ðtÞdt < 1. By multiplying e�t2=2 on the both sides, Eq. (22) can be changed into
f ðtÞ ¼
X1
n¼0

CnFnðtÞ �1 < t < 1 ð25Þ
Obviously (23) can be re-written as
Cn ¼
1

2nn!
ffiffiffi
p

p
Z 1

�1
f ðtÞFnðtÞdt ð26Þ
From the convergence of Eq. (22), it can be seen that Eq. (25) converges to f ðtÞ. Since hðtÞ is any continuous
function that satisfies

R1
�1 e�t2h2ðtÞdt < 1, thus any continuous function, f ðtÞ, which satisfies

R1
�1 f 2ðtÞdt <

1, can be expanded into a converged series of Hermite orthogonal functions. For our case,
R1
�1 f 2ðtÞdt

represents the energy integration that must be finite.

If normalized Hermite orthogonal functions are used, the expansion becomes:
f ðtÞ ¼
X1
n¼0

bCCn
bFFnðtÞ; bCCn ¼

Z 1

�1
f ðtÞbFFnðtÞdt ð27Þ
4. Numerical analyses

According to the theoretical analysis above, the deflection, wðxÞ, which satisfies
R1
�1 w2ðxÞdx < 1, can

be approximated by a series of Hermite orthogonal functions
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�wwðxÞ ¼
XN
n¼0

bCCn
bFFnðxÞ �1 < x < 1 ð28Þ
and its derivatives are
�ww0ðxÞ ¼
XN
n¼0

bCCn
bFF 0
nðxÞ; �ww00ðxÞ ¼

XN
n¼0

bCCn
bFF 00
n ðxÞ ð29Þ
By substituting (28) and (29) into (6), the potential energy functional (6) is reduced to a polynomial ofbCC0; bCC1; bCC2; . . . ; bCCN ,
V ¼ V ðbCC0; bCC1; bCC2; . . . ; bCCN Þ ð30Þ
The relevant amplitudes are to be found by minimizing the potential energy function (30) (i.e., solving the

equilibrium equations of the Rayleigh–Ritz model). Accuracy depends on the number of coordinate
functions and the ability of the chosen functions to represent the actual buckling pattern.
4.1. Limits of integration

Eq. (30) involves the energy integration on the infinite region �1 < x < 1. It mainly involves the in-

tegration of
R1
�1
bFFmðxÞbFFnðxÞdx,

R1
�1
bFFmðxÞbFF 3

n ðxÞdx, and
R1
�1
bFF 2
mðxÞbFF 2

n ðxÞdx. For numerical analyses, an ap-

propriate integral limit, a, has to be determined and the integral
R1
�1
bFFmðxÞbFFnðxÞdx can be approximated byR a

�a
bFFmðxÞbFFnðxÞdx. Their integration accuracies can be represented by those of

R a
�a
bFF 2
n ðxÞdx and

R a
�a
bFF 4
n ðxÞdx.

In order to decide the integration limit, a, two functions are defined to measure the integration errors:
Error2ðn; aÞ ¼ 1�
R a
�a
bFF 2
n ðxÞdxR1

�1
bFF 2
n ðxÞdx

; Error4ðn; aÞ ¼ 1�
R a
�a
bFF 4
n ðxÞdxR1

�1
bFF 4
n ðxÞdx

ð31Þ
(It should be noted that
R1
�1
bFF 2
n ðxÞdx ¼ 1 and

R1
�1
bFF 4
n ðxÞdx is calculated with the integration limit being

very large.) The variation of Error2ðn; aÞ � n for a ¼ 5–9 is shown in Fig. 3. It is obvious that for the same

integral limit a,
R a
�a
bFF 2
n ðxÞdx has different accuracy for a different n. In order to achieve a similar accuracy, a

should increase with n. If a ¼ intð4 ffiffiffi
n3

p Þ is used, the integral errors for
R a
�a
bFF 2
n ðxÞdx and

R a
�a
bFF 4
n ðxÞdx are listed

in Table 3 for n ¼ 5–180. (Here the function intð Þ rounds the number down to the nearest integer.) From

Table 3, it can be seen, for a ¼ intð4 ffiffiffi
n3

p Þ,
R a
�a
bFF 2
n ðxÞdx and

R a
�a
bFF 4
n ðxÞdx keep a similar accuracy for all n.
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Fig. 3. The integration errors for different a.



Table 3

The integration errors

n 5 10 15 20 30 50 99 180

a ¼ intð4
ffiffiffi
n3

p
Þ 6 8 9 10 12 14 18 22

Error2ðn; aÞ 2.9E)10 1.1E)16 1.3E)15 8.9E)16 6.7E)16 4.4E)16 1.9E)15 6.7E)15
Error4ðn; aÞ 7.8E)16 1.2E)15 1.1E)15 2.2E)16 6.7E)16 8.9E)16 1.1E)16 1.2E)15
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Hence, in the numerical analyses, a ¼ Maxðintð4
ffiffiffiffi
N3

p
Þ, 6Þ, i.e., the lager of intð4

ffiffiffiffi
N3

p
Þ and 6, is used as the

integral limit. Here N is the order of the highest-order Hermite orthogonal function.
4.2. Numerical scheme

In this paper, Simpson�s integration scheme is used and the integration is carried on ½�a; a�. If the

number of integral points within one unit length is represented by M (¼ 20–50 in this paper), the integral
step length is 1=M , and the integration points are at xi ¼ i=M where i varies from �Ma to Ma. The energy
integration (6) is approximated by
V ¼
XMa

i¼�Ma

1
2

PN
n¼0

bCCn
bFF 00
n ðxiÞ

� �2
� 1

2
P
PN
n¼0

bCCn
bFF 0
nðxiÞ

� �2
þ 1

2

PN
n¼0

bCCn
bFFnðxiÞ

� �2
þ 1

3
b
PN
n¼0

bCCn
bFFnðxiÞ

� �3
þ 1

4
c
PN
n¼0

bCCn
bFFnðxiÞ

� �4
8>>><>>>:

9>>>=>>>; � 1
M

ð32Þ
Since the approximate potential surface (32) is an analytical function of the amplitudes bCC0; bCC1; bCC2; . . . ; bCCN .

Its minima can be found by using a multi-dimensional Newton–Raphson method (Press et al., 1992). By

making use of the vector expression, the Newton–Raphson iteration is stated as
bCCnew ¼ bCCold �H�1F ð33Þ
where
H ¼ o2V

obCCi obCCj

ðbCColdÞ; F ¼ oV

obCCi

ðbCColdÞ ð34Þ
are the values of Hessian matrix and gradient of potential energy at the previous trial solution.
4.3. Numerical examples

(1) Comparison with the perturbation solution (with b ¼ 0 and c ¼ �1). If the loading parameter P is
close to the critical value Pc ¼ 2, the perturbation solution is valid. Under this circumstance, the pertur-

bation solution varies in a considerable length; on the other hand, Hermite functions attenuate fast. In

order to approximate the buckling mode accurately, many terms of Hermite functions are needed. Because

of the symmetry of the buckling mode, the odd terms of Hermite orthogonal functions are superfluous.

Only the first 91 even terms are used, i.e., N ¼ 180. The comparison of the Rayleigh–Ritz approach and the

perturbation solution is shown in Fig. 4 for three different loads in the range of 06 P < Pc. For the case of
P ¼ 1:95, the perturbation solution is quite accurate; the Rayleigh–Ritz solution is very close to the per-

turbation solution in the range ½�19; 19�, beyond which the Rayleigh–Ritz solution attenuates quickly. For
the case of P ¼ 1:90, the solutions by two approaches are quite close, since the perturbation solution also

attenuates faster. For the case of P ¼ 1:80, the solutions by two approaches have an obvious difference
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around the origin point, since the perturbation solution is no longer accurate for this case (Whiting, 1997)

that is not close to the critical condition (P ¼ 2:00).
(2) Comparison with Galerkin approach (with b ¼ 0 and c ¼ �1). For the case that the loading

parameter P is not close to the critical value, the perturbation solution is invalid. Whiting (1997) has

demonstrated by Galerkin method that the solution is quite localized. Hence, a few of Hermite functions

are able to approximate the buckling mode accurately. For this case, the first 26 even terms are employed,

i.e., N ¼ 50. The comparison of the Rayleigh–Ritz approach and the results of Whiting (1997) are shown in

Fig. 5 for P ¼ 1:00 and 0.00. The results of the two approaches are very close.

(3) The convergence of the solutions (with b ¼ 0 and c ¼ �1). For the case of P ¼ 1:00 and 0.00, let the

coordinate function numbers N ¼ 50, 30, 10, the corresponding buckling shapes are shown in Fig. 6. The

buckling shapes for N ¼ 50 and 30 almost completely overlap each other, which means the solutions have a
good convergence. Hence, generally, the first sixteen even terms (N ¼ 30) is able to model the buckling

pattern accurately. Even with only six even terms (N ¼ 10) the solution are quite acceptable.

(4) Comparison with AUTO solutions (with b ¼ �1). In the case with re-stabilizing non-linearity (Wadee

and Bassom, 2000), the buckling mode undergoes a series of oscillations. As it is difficult to obtain the

higher-order trial functions from perturbation analysis, thus, with only a few perturbation trial functions,

the Rayleigh–Ritz analysis fails for this case. In the proposed approach, as trial functions, Hermite

functions, are known, it is expected that, with enough trial functions, the Rayleigh–Ritz approach is ap-

plicable to this case. The results are shown in Fig. 7 with the comparisons with other numerical solutions
(AUTO). For two cases with (P ¼ 1:20, c ¼ 0:24) and (P ¼ 1:74, c ¼ 0:40), the results of the Rayleigh–Ritz

analysis with the first 51 even Hermite functions are very close to AUTO solutions (Wadee and Bassom,
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Fig. 5. Comparison of the Rayleigh–Ritz analysis of Hermite function with Galerkin analysis (Whiting, 1997), with b ¼ 0 and c ¼ �1.
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2000) except at the points outside the range of ½�15; 15�; with the first 91 even Hermite functions, the

differences between the Rayleigh–Ritz solutions and AUTO solutions are indistinguishable.

(5) The efficiency of the techniques. The proposed method is efficient. For the case of N ¼ 180, the com-

putational time on a personal computer is only 4.35min. ForN 6 50, the computational time is less than 1.0min.
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5. Conclusions

This paper has presented a Rayleigh–Ritz procedure for localized buckling of a strut on a non-linear

elastic foundation. The deflected shape of a strut is expanded as a series of Hermite orthogonal functions.

The recursion formulae for Hermite orthogonal functions and their derivatives have been derived. The

expandability of an energy-integrable function into a series of Hermite orthogonal functions has been

proved. The errors of the numerical integration of Hermite functions on an infinite region have been in-

vestigated and a reasonable integral limit, a ¼ Maxðintð4
ffiffiffiffi
N3

p
Þ; 6Þ, has been suggested. Through the nu-

merical investigation, the following conclusions could be reached:

(1) The localized buckling pattern can be approximated by a series of Hermite orthogonal functions. The

proposed method overcomes the disadvantages of the traditional methods, in which the trial functions for

either Rayleigh–Ritz or Galerkin approach are based on the perturbation analyses of the corresponding

non-linear differential equation. With enough trial functions, the proposed Rayleigh–Ritz approach is

applicable to the case with re-stabilizing non-linearity where the traditional Rayleigh–Ritz analysis fails.

(2) The proposed method is efficient and has a good convergence. The first sixteen even terms are able to

model the buckling pattern accurately. Even for the case in which the buckling mode varies in a consid-
erable length, only the first ninety-one even terms are enough to approximate the buckling mode. In the

numerical sense, this computational load is very little. As Hermite functions are standard and less than one

hundred terms are employed, with a little effort, the proposed method can be implemented in a personal

computer.
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